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PROJECTION METHOD OF SOLVING A PROBLEM OF FORCED UNSTEADY OSCILLATIONS 
IN NONLINEAR SYSTEMS WITH SLOWLY VARYING PARAMETERS* 

M.R. WSRKIN and V.M. E'RIDMAN 

A problem of forced unsteady oscillations of a nonlinear system whereitsparameters, 
as well as the parameters of the external periodic perturbation vary slowly, is 
considered. It is assumed that the nonstationary oscillation process is preceded 
by the stationary periodic oscillations. A projection method is proposed, which 
makes it possible to construct solutions with any degree of accuracy afterafinite 
time interval. 

1. Formulation of the problem and description of the method. The problem is 
described by the following equation: 

i (t) = F (5 (0, = (% cp 0)) (1.1) 

where x is an m-dimensional vector, F is a vector function 2n-periodic in (o , and r , 
called "slow time", is a known function of the "rapid time" t satisfying the relations 

Z. = eg (T), t 23 0; z (t) = 0, .t f 0 (1.2) 

where e is a small nonnegative number, ‘p’(t) = w (t)> 0 is the perturbation frequency,cp (0) = 
0, the functions g(z) and o(r) are continuous and g(r)> 0). 

According to the condition (1.2) the parameters of the system and the perturbation fre- 
quency 0 (0) = ap are all constant when tgo. We also assume that the system executes 
purely periodic motions s(t) = r(w”t) with the frequency w", and this determinestheinitial 
condition 

x (0) = E” (0) (1.3) 

The problem is investigated under the assumption that the function F is defined and 
condinuously differentiable for x belonging to the open domain Q and for any z and cp. 
We also assume that its partial derivatives satisfy the Lipschitz condition in x in any 
bounded region of the domain of definition. 

Substituting tl = q(t) by an independent variable reduces the equation (1.1) to the 
form 

F?(T) _ $=Fl(r,~(tl), h); F1=&, ” -e---ego dt, - 0) (T) 

or, neglecting the indices accompanying t, g and F, to 

i = F (x, T (t), t) (1.4) 

When t<O and e>O, and also when t is arbitrary and e=O, the system (1.4) be- 
comes a an-periodic system 

x- = F (x, 0, t) (1.5) 

wNch has a 2x-periodic solution P(t) by definition. 
An approximate solution of the problem (1.5) of steady state oscillations can be found 

using the projection method, in the form 

(1.6) 
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The constants aknc (- n< k < n) are obtained from the system of nonlinear Galerkin equations 
(n denotes the number of approximation (see e.g. /l/)) 

Fhn (a_nno, , c&, 0) -= 0, I k I --I n ii.71 

2x 

FIc7,(a-nn, . . . , a,,,,, T,=iF(c alaeilf, T, f) e-is1 g - ikak, (1.8) 
0 iz--,t 

- 
It is understood that, when real solutions of a real system are sought, then a-kn -7 atin. 

To obtain an approximate solution of the problem (1.4), (1.3) of nonsteady oscillations, 
we propose a method according to which the solutions are obtained in the form 

:r,(t) = i akn(t)eikf (1.9) 
ti=--n 

and the coefficients akn are found from a system with initial conditions 

a‘l;, = Fk, (a-%,,, . . . , an,,, t (t)), I k I < n (1.10) 

with Fk,, taken from (1.8). 

ch.n (0) = akn’ 
(1.11) 

When the relevant assumptions ensuring the asymptotic stability of the steady mode of 
oscillations, the coefficients a&,(t) are found to be slow fI.u'XtiOnS of time. Forthis reason 
the Cauchy problem (l.lO), (1.11) c,an be solved using one of the numerical step methods. 

If real solutions are sought, then it is convenient to introduce new (real) unknowns 
ah.,, (0 < k < n) and bkn(i<kkn), or r&,(0 < k <n) and $kn(l <k< n) defined by the equa- 

tions 

%+,=ak,- ibkn = r#,, exp (- i&,) (0 < k < n, b,, = &,,, = 0) 

In this case the relations (1.9) and (1.10) yield 

k=, 

cos kt + bkn (t) Sill /,t) = + Q,(t) + 2 rk,, (t) COS (lit - $kn) 

k=l 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

When the initial system (1.4) is linear or quasi-linear, so is the system (1.121, (1.13). 
The system (1.141, (1.15) is always nonlinear, but has the advantage that it allows a direct 

determination of the amplitudes and phases determining the character of the oscillations. 
The method described can be regarded as a projection method, provided that we passtoafamily 
of the problems analogous to (l-4), (1.3) and depending on the parameter. 

2. Projection approach to the method. The family of equations 

I. (G $) = F (5 (t, lli), r (t), t f $) (2.1) 

depending on the parameter + has, at t<o, a family of periodic solutions E" (t + 9). Their 

continuation at t>O is found from the initial conditions 

r (0, *) = 5" (9) (2.2) 

The Cauchy problem (2.1), (2.2) has the corresponding abridged problem 

G,' (t, Q) = P,I' (G (t, $), z (t), t + $), G (0, $) = E," ($) (2.3) 
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where P, is the Fourier operator forming, together with the &-periodic function of the 

argument qpI its n-th Fourier sum, and c is the app roximation (1.6) of the stationary 
problem 

s,(t, qp) = r i_, akn(t)e*Qf+*) = ,g_n pm(t)e*k* (2.4) 

The problem (2.3) is equivalent to the system (1.101, (1.11) for the coefficients at,(t), 
therefore for the approximation to the initial problem (1.4), (1.3) we have r,,(t) =z,,(t,O). 
Assuming @ (5, t,9) = F (2, T(t), t + $), we can write the problem (2.1), (2.2) and the problem 
(2.3) in the general fonm 

The above problem are studied under the assumption that the function @ is continuous 
and has continuous partial derivatives in z and 0 satisfying the Lipschitz condition in 3 
in any bounded region of the domain of definition, which is guaranteed by the properties of 
F. 

Equations of the problems (2.5) and (2.6) can be interpreted as equations in the Banach 
space of functions of the parameter 9. Let E = lV1.~ be a Sobolev space of m-dimensional, 

2n -periodic vector functions E (MT absolutely continuous and possessing a square-sum- 
mable derivative almost everywhere. The norm is given by the equation 

(2.7) 

By virtue of the inclusion 
gence 

Let H be an open set of functions belonging to E, the values of which lie in 9. We 

theorem /2/ this norm is stronger than the norm of uniform conver- 

(2.8) 

define the function I]($) = a(%($), t,+) for any E belonging to H and any t . From (2.8) 
and the assumption made about the properties of D_, it follows that q = f(%, t) is a func- 
tion with the values belonging to E, defined for % belonging to H and for all t. Moreover, 
f(%. t) is a continuous function of its arguments satisfying the Lipschitz condition in f in 
every bounded region of the domain of definition. 

Introducing the time functions with values belonging to N 

% (4 (11) = x 07 4% %* (Q ($1 = 9, (t, l)) 

we find that the problems (2.5) and (2.6) have the corresponding Cauchy problems in H 

(2.9) 

E’ (0 = f (E (0. 0. 5 (0) = % (2.10) 

rn 0) = P*f (% WV 07 %n (0) = Fin0 (2.11) 

Using the theorem of existence and uniqueness for the Cauchy problem in a Banach space /3/, 
we can prove the following assertion. 

LB 1. Problems (2.10) and (2.11) are equivalent to the problems (2.5) and (2.6) i.e. 
their solutions are defined (and unique) on one and the same time interval, and are connected 
by the relation (2.9). 

3. Convergence of the method. Let E be any Banach space and f(&, t) a contin- 
uous function defined on its open subset H and time interval J - 10, b), assuming the values 
in E and satisfying the Lipschite condition in E in any bounded region of the dostain of de- 
finition. Let also P,: E+E,, be a sequence of linear bounded operators mapping E onto 
a closed invariant subsapce (P,,E,,cE,). We introduce the following notation 

II % 0) lb =zgT II % (4 II 

Theorem 1. Let E(t) be a solution of the problem (2.10) on the (finite or infinite) 
interval J = [O,@ , and let 
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as n+m. Then a solution E*(t) of the problem (2.11) exists on any finite interval 
IO. TIC J for all sufficiently large n, and E,,(t)-+ c(t) as n--t 00. The rate of convergence 
is determined by the inequality (cl and cz are constants) 

lIL@) - E(t) ilr __. II c,,- - r',,E /I ('1 I/ I',,:(2) -C (t) //TC? i3.3) 

Proof. Let r> 0 be such that the I‘ -neighborhood of g(t) remains in H for 0 <, t:- 
T. By virtue of (3.1) /I P, (I cc;; L and jl P&(t)- E(t)i!?-+ U, hence at large n the function 

p,,s (0 remains in the region HJI = {EE H 111 E (1 <M} where AI = I/ 5 (t) /IT -- I' . From this 
it follows that P,,E (t) represents the E, -solution of (2.11) for O<t<T where E,, = 
LKII E e(t) - P,f (t) IIT and K is the Lipschitz constant of f (E. t) in HM for 0 < t< T. 
Using the theorem on matching the E -solutions /3/, we can show that at large n the func- 
tion E,, (t) is defined and does not emerge from HM onto 10, Tl , and thus derive the estimate 
from above for 11 P,E (t) - E,, (t) 11 from which the estimate (3.3) follows. 

Theorem 2. Let the right-hand part of (2.5) satisfy the condition of smoothness form- 
ulated earlier, and En@-+ E" on the norm (2.7). The the solution z,,(t,$) of the problem (2.6) 
converges to the solution s(t,$) of (2.5), in the sense that for any 2'; 0 and n-+oo 

(3.4) 

The rate of convergence is determined by the rate of convergence of f,"+ p and of the 
Fourier series for r(t,$) and ax (t, gyaqi. 

Proof. By virtue of Lemma 1, it is sufficient to confirm the validity of condition (3.1) 
of Theorem 1 for E = WI,,“’ and the Fourier operators P,,. But this is equivalent to the 

convergence of the Fourier series in L,” for E and dEld$ for 5 ~5 TtTl zn'. 

Corollaries. lo. When the conditions of Theorem 2 hold, we have the uniform converg- 

ence ~(t,~)-+s(t,~,), i.e. 

(3.5) 

2O. When the conditions of Theorem 2 hold, we have the uniform convergence of the solu- 
tion x,,((t)obtained from (1.9), (1.10) and (1.11) to the solution z(t) of the problem (l-3), 
(l-4), i.e. 

max 1 xn (t) - x (t) I--+ 0, It -+ 00 
OCKT 

The first corollary follows from Theorem 2 by virtue of the inequality (2.8), and the second 
corollary follows from the first one since xn (t) = xn (4 O), 5 (t) = x (t, 0). 

The requirement that the right-hand side of (1.1) be smooth, can be relaxed by using a 

modification of the proposed method in which the Fourier operators P, are replaced by the 

Fej& operators forming, together with the &c-periodic function E (1c1) I its Feje'r sum tak 

are the Fourier coefficients) 

If in addition the right-hand part of the system (1.1) is continuous and satisfiestheLipschitz 
condition in x on the bounded sets, then, taking the space of continuous functions of 9 as 

E, we can confirm the validity of Lemma 1. Therefore Theorem 1 leads to an assertion an- 

alogous to Theorem 2 where (3.4) is replaced by (3.5) only, with (3.6) following as a coroll- 

ary. 
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4. Slowness of the change in the coefficients ah,(t). At small e the coeffi- 

cients akn(t) are slow functions of time t onanyfiniteinterval. Indeed, the continuity of 
the solutions with respect to the parameter e implies that when e+ 0, ak, (t)+ ak,,“(t) uni- 

formly in t E IO, Tl for any T>O. Therefore ab,' (t) + Fk,,(a-,,,,‘, . . . , h,‘, 0) = 0. In a 

number of cases however (e.g. during a passage through a resonance), it is necessary to con- 
sider the solution on a finite interval of slow time z , i.e. on an interval of time t 
asymptotically unbounded when E-+0. 

Let us assume (for simplicity, but without loss of generality) that T = et when e > 0. 
Assuming a,, = (a-,,,,, . . . . CL&, we can write the equations (1.4) and (1.10) in the form 

e+F((r,r, t), e+=F,(um T) (4.1) 

bet the equation F,,(u,,,,~*)=o have an isolated root u,,*(r*) for O&Z* < T, which is 
an asymptotically stable uniformly in r*, stationary solution of the equation 

du,/dt = F,, (a,,, r*) (4.2) 

Then by virtue ofthe Tikhonovtheorem /5/ the solution a,,,(t) of the second system (4.1) tends 
to y,,(t) = a,* (et) = a,,* (T) as e+ 0 uniformly in z for 0 < t, < r < T. Moreover, if the 
solution of the system (1.7) is used as the initial condition a,," for (4.2) so that u,,* (0) = 
u,,(O), then the convergence will be uniform over the whole interval O%;T< T. Thus a, (t) = 

y,, (t) + 6, (t) where dy,,ldt, S, -_, 0 as e + 0 uniformly in r for O<z<T. In this case 
one can speak of asymptotic slowness of the solution a,(t). 

The conditions of the Tikhonov theorem can be verified directly using the autonaaous eq- 
uation (4.2). However the derivation of these conditions from the properties of the equation 

dz/dt = F (5, +‘, t) (4.3) 

obtained from (1.4) by "freezing" T (T* = CODSt) can be of interest. 

Theorem 3. Let the equation (4.3) have, for 06 T* < T , a periodic solution s(r*,t) 
depending continuously on %*, and let all multiplying factors of the equation in variations 
lie within a unit circle when O<t* < T. Then, for sufficiently large n, the solutiona,, 
of the second equation of (4.1) with CL,, (0) = a,,* (0) will be asymptotically slow as e+ 0. 

proof. Equation (4.3) can be replaced by an equivalent integral equation of the form 
5 = Bx in the space E = C (WI,,‘“) of continuous functions of T* with the values belonging 

to the space W,p of functions of t. The equation F,,(a,,, z*) = 0 is equivalent to the 
Galerkin equation x,, = P,,Bx,, , therefore frcm Theorem 19.1 of /4/ it follows that for large 
n there exists an isolated stationary solution a,,* (T*) of equation (4.2) continuous in T*. 
To prove its asymptotic stability uniform in T*, we shall consider the equation x' = P(x, z*, 

t +*) and its solution s(z*, t j-s) periodic in t and 9 continuous in T*. It can be 
shown that the monodromy operator U(T’, +) of the corresponding equation in variations re- 
sembles, at any 9, the operator lJ(r*, 0), and this means thatits spectrum lies within a 
unit circle. On the other hand, Theorem 1 implies that the monodrany operator u, (r*,*) of 
the equation x,,' = P,F(x,,, T*, t -kq) corresponding to the solution &an+, tf9) 
the operator U(ti+, +) in the space 

converges to 
E=C(Llmxm ) of operator functions continuous in r* 

and square-summable in $. From this it follows that its spectrum lies, at large n,within 
a unit circle. Therefore the solution & (I*, t +$), and hence an* (x*) # is asymptotically 
stable uniformly in T+. 

Under the stricter conditions of stability of the solution I(+, t)r we can guarantee 
the slowness of all a,(t) (for which a,,* (T*) exists) and not only of those with sufficiently 
large n. Below we use the notation ReB=(B +B*)/2 where B* is a conjugate of B. 

Theorem 4. Let the operator Re LWaF. (z, T*, t)/ax] be negative when the operator W 
is positive for tE~,O<T*,(T,O<t<h. Then the solution a,(t) of (4.1) with a,(O)= 
CZ,,* (0) is asymptotically slow as e+lJ for any n for which an isolated solution %I* (.t+) 
of the equation F,(a,,, z*) = 0 continuous in T* exists. 

Proof. It is only necessary to establish the asymptotic stability of the stationary 
solution G* (T*) of (4.2). The equation for (4.2) in variations can be written in the form 

Finn' = &-I (r*) fin, - ikh, (! k [, 1 I 1 < n) 

or in abridged form as fin'= Ap)(T*)p,, where A(") (T*) = (Ar,J”) (T*)) is a matrix-type operator, 
Ak,l(") (r*) = Ak_,,” (z*) - ih&,, and A,,, (2’) are the Fourier coefficients for 

aFl6’z (xn (T*, t), z*, t) 
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Using the condition 

p > 0 

Substituting 

and integrating over the interval [O, 2n] with respect to t, we obtain 

,k,,$_mB?=Re IM'AI;-I,~IB~,,<--P ,,$Bkn12 (4.4) 

Let Wcn) = W,Ss . . . 9 W(2n + 1)times. Then from (4.4) it follows that the operator 
Re [ W(*)A(")(z*)l is negative definite and the spectrum of A(“)(T*) lies, by virtue of the 
Liapunov theorem (see Theorem 5.lin/6/)inthelefthalf-plane. This means that the solution 
an*(+) is asymptotically stable. The uniformity in T* of the stability becomes clear when 
all equations are considered in the Banach space of functions of r*. just as in the proof 
of Theorem 3. 

Corollaries. lo. Let the equation (1.4) be linear: 2' = A (T, t) x + 6 (z. t) and let 
the operator Re [WA (T, t)] be negative for the positive operator W when 0 <T < T, O,< t < 23~. 
Then the solution a,,(t) is asymptotically slow as E+-0 for any ?I =o, 1,2... . 

2’. Let the equation (1.4) have the form z' = A (T) I + IJ(z, f) and the spectrum of A CT) 
lie inthe lefthalf-planewhen O<~<*f.Then the solution a,(t) is asymptotically slow as 

E-+O for any n= 1, 2... . 

5. Example. The above method is illustrated using the example of a one-dimensional 
nonlinear oscillator with the restoring force possessing a rigid cubic characteristic. The 
oscillator executes forced oscillations under the action of a harmonic load of slowly in- 
creasing frequency and amplitude 

Writing the second 
the system (1.14), 

rl' = o-lrz cos (& - $J, 

2" + p5' + hS (2 

z= 0, 
1 

t<o 
et, t>o 

order equation in the form of a system in z,= 5 and z2= I', we arrive at 

(1.15), which assumes the following form at D= i : 
VI = 1 + drl-+* sm (*,a - IpI), r2’ = 6r1her, (1 + 0,75 dr12) sin (qn -ql) - o-$rI + o-lp cos$, 

&' = i + o-1r,-112r, (1 + 0,75 drle) sin (\08 -vi) 

Here we have 

5 (t) = 71 co9 (cp - $I), 2’ (t) = r2 co9 ((p - **) The figure 1 depicts the results of computation 
(using the Runge-Kutta method) for rl, obtained 
for h = 1, d = 0,006, o" = 0.9, p = 0,08, IX = 0,005, p0 = 1 

12 - on the interval Og t<150 where the system 
passes through a fundamental resonance. We see 
that the amplitude rl varies much more slowly 

6 
than the solution 2 (Q. This means that the 
system can be solved with any degree of accur- 
acy in relatively few steps, even in the case 
when E is not very small and a quasi-station- 

o- 
30 60 90 I20 150 

ary approximation cannot be used. 
Use of the higher order approximations 

Fig.1 (n=3 and n= 5) gives a noticeable improve- 
ment in the accuracy only when the nonlinearity 

is large and in the case of passage through ultrahannonic resonances. 
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